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Figure 1:We record actors on a virtual production LED stage using a green background and only red and blue foreground lighting,
with no green foreground light illuminating the actors (a). The processed green channel forms a high-quality holdout matte (b).
We can naively restore the green channel of the foreground element as a linear combination of the red and blue foreground
channels (c). For better accuracy, the green channel can instead be restored through an example-based AI technique (d). We
composite the colorized foreground onto a background plate using the derived alpha (e). The result is virtually indistinguishable
from the actors actually photographed in front of the background plate (f).

ABSTRACT
We introduce Magenta Green Screen, a novel machine learning–
enabled matting technique for recording the color image of a fore-
ground actor and a simultaneous high-quality alpha channel with-
out requiring a special camera or manual keying techniques. We
record the actor on a green background but light them with only
red and blue foreground lighting. In this configuration, the green
channel shows the actor silhouetted against a bright, even back-
ground, which can be used directly as a holdout matte, the inverse
of the actor’s alpha channel. We then restore the green channel of
the foreground using a machine learning colorization technique.
We train the colorization model with an example sequence of the
actor lit by white lighting, yielding convincing and temporally sta-
ble colorization results. We further show that time-multiplexing
the lighting between Magenta Green Screen and Green Magenta

Screen allows the technique to be practiced under what appears
to be mostly normal lighting. We demonstrate that our technique
yields high-quality compositing results when implemented on a
modern LED virtual production stage. The alpha channel data ob-
tainable with our technique can provide significantly higher quality
training data for natural imagematting algorithms to support future
ML matting research.

CCS CONCEPTS
• Computing methodologies→ Computational photography;
Image processing.

KEYWORDS
Matting, compositing, spectral imaging
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1 INTRODUCTION
Separating actors from a background image to composite them into
a new scene is a fundamental problem in visual effects, and one
which still poses challenges in the digital era [Wright 2013]. The
problem is challenging since each pixel of an image can belong
to both the foreground and the background: partial coverage at
edges, wispy and transparent structures, defocused and motion-
blurred areas all exhibit partial transparency. Determining the RGB
color of the foregound element at a pixel, as well as the pixel’s
transparency 𝛼 , is both tricky and underdetermined by a single
RGB image. Even when the actor is filmed in front of a green screen,
it can be challenging to obtain a high-quality foreground element
and 𝛼 channel. As stated by computer graphics pioneer Alvy Ray
Smith, “The history of digital image compositing is essentially the
history of the alpha channel.” [Smith 1995]

Notably, while visual effects practitioners in both the film and
digital cinematography eras have long relied on chroma-keying,
or filming an actor in front of a blue or green screen and then us-
ing color space manipulations to derive a foreground/background
separation [Beyer 1965; Fielding 2013; Sawicki 2007; Vlahos 1964;
Vlahos and Taylor 1993], these techniques rely on heuristics and
approximations, without analytically solving the underconstrained
matting equations, as detailed by Smith and Blinn [1996]. As such,
the contemporary green-screen keying algorithms in the modern
compositor’s toolkit, often part of proprietary commercial tools
(Image-Based Keyer, Primatte, etc.), require substantial manual
parameter tuning to work effectively and only provide an approxi-
mation of the per-pixel transparency [Aksoy et al. 2016].

To complement their analysis of the matting equations, Smith
and Blinn [1996] introduced triangulation matting, whereby a sta-
tionary subject is filmed in front of two known backgrounds. Given
this additional constraint—two known backgrounds instead of one—
an accurate alpha channel can be derived from the matting equa-
tions. This technique was leveraged by Rhemann et al. [2009] to
develop the ground truth alpha channel imagery for the first public
benchmark designed for fairly evaluating the myriad alpha matting
algorithms proposed by the computer vision research community.
Although limited to imagery of about thirty different relatively
small, static objects, this benchmark1 was the first of its kind to
include analytically-derived ground truth alpha mattes recovered
from photographs.

Since the introduction of this benchmark, matting algorithms
have received a great deal of attention from the visual computing
research community, particularly algorithms aiming to solve the
highly ill-posed natural image matting problem where the back-
ground content is unknown and non-uniform [Levin et al. 2007].
Unfortunately, while several new public datasets and benchmarks
have been released in the subsequent years, including those with
imagery of people and those with motion imagery, the static and
object-limited dataset of Rhemann et al. [2009] remains, to the best
of our knowledge, the only dataset which provides ground truth
alpha mattes. The remaining datasets published in the era of deep
learning–based matting algorithms ([Erofeev et al. 2015; Lin et al.
2021; Xu et al. 2017]), leverage labels derived from chroma-key
approximations or manual rotoscoping. This is an understandable

1http://www.alphamatting.com/datasets.php

limitation of these datasets, since methodologies used to record
ground truth alpha mattes at video rates have remained difficult
to practice, requiring sophisticated hardware configurations. We
therefore introduce Magenta Green Screen with the goal of record-
ing ground truth alpha mattes at video rates, such that we can film
scenes containing realistic human motion with appropriate motion
blur along with diverse materials, including challenging-to-matte
moving hair strands and transparent materials.

In our proposed technique, we use a three-channel RGB camera
to record the red, blue and alpha channels of the desired four-
channel RGBA image, instead of the typical red, blue, and green
channels. As our recorded imagery is thus missing its typical green
channel, we infer this green channel given the corresponding red
and blue channels using a machine learning network trained on
full-color exemplar images. We demonstrate that our proposed
technique can be used directly as a film production methodology
and argue that it can be used to capture realistic alpha channel
data at scale to train deep learning–based video matting algorithms.
While we record data to demonstrate our technique in an LED
volume virtual production stage, this hardware setup is not strictly
necessary: the only strict requirement is a set of LED based light
sources capable of producing fields of red, green, and blue light
independently.

2 RELATEDWORK
The process of deriving a matte (i.e., alpha channel) for foreground
elements to composite them onto new backgrounds has a rich
history with a long line of contributions from both industry and
academia. While a complete discussion is outside the scope of this
paper, in this section we review some of the most relevant literature
to our project.

Where possible, actors are filmed in front of a green screen,
and both the actors’ foreground appearance and alpha channel
are derived from the green screen image. The central difficulty is
that while the green channel is bright everywhere the background
should be, it is not always dark where the foreground should be.
Thus, the matting algorithm somehow needs to remove the fore-
ground appearance from the green channel based on the red and
blue channels. As described by Smith and Blinn [1996], this can be
done if the color space of the foreground object is limited to at most
two dimensions, such as when it is known to be neutral in color, or
flesh-toned, or lacking in the color present in the background. Both
film-based [Vlahos 1964] and digital compositing techniques used
in commercial products such as Ultimatte have assumed a limited
foreground object color space, called the Vlahos Assumption.

2.1 Recording a Separate Alpha Channel
Another technique which has been explored is to photograph the
alpha channel as a fourth color channel, simultaneous to the RGB
color channels, using a reserved part of the spectrum. Infrared
matting places the actor in front of a visibly black screen reflecting
infrared (IR) light, and uses beamsplitter to direct the IR toward a
separate strip of film [Pickley 1946] or digital video camera, e.g.,
[Debevec et al. 2002]. The infrared image sees the actor silhouetted
against a bright background, forming a holdout matte, or the inverse
of the alpha channel. Infrared matting is challenged by the fact that

http://www.alphamatting.com/datasets.php
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infrared light tends to focus differently through optics than visible
light [Vidor 1960]. The sodium vapor matting process [Vlahos 1958]
moves the matting channel into the visible spectrum by filming the
actor in front of a field of monochromatic yellow-orange light from
a low-pressure sodium vapor lamp. A beamsplitter and bandpass
filter allows the yellow background to be filmed on one strip of film,
forming a holdout matte, and the actor’s full-color appearance to
be recorded through a notch reject filter on a second strip of film,
blocking the sodium vapor light to show the actor normally lit on
a black background. Our work takes some inspiration from sodium
vapor matting, but we eliminate the need for a specialized camera
by using the green channel (rather than infrared or yellow) to record
the matte, and we use a deep learning colorization algorithm to
restore the missing green channel of the actor. Numerous other
matting techniques employing specialized optical properties have
been proposed and used, including polarization [Ben-Ezra 2000]
and retroreflectivity [Jenkins 1952].

2.2 Natural Image Matting
Natural image matting is the process of separating a foreground
element from a complex background, where the background color
is variable and sometimes unknown across the image. Numerous
techniques from Bayesian Matting [Chuang et al. 2001] onwards
[Levin et al. 2007, 2008; Sun et al. 2004; Wang and Cohen 2007] have
proposed automated and semi-automated techniques for natural
image matting. Typically, these algorithms begin with a manually
drawn segmentation into known foreground (𝛼 = 1), known back-
ground (𝛼 = 0), and unknown transition (0 < 𝛼 < 1) regions, and
the algorithm estimates 𝛼 and the foreground/background colors 𝐹
and 𝐵 at each pixel in the transition region. These algorithms have
made their way into software tools available for production use,
but still typically require manual input to achieve good results.

2.3 Matting with Deep Learning
Recently, deep learning techniques have been applied to the natural
image matting problem with significant success, as in [Cai et al.
2019; Chen et al. 2018; Forte and Pitié 2020; Hou and Liu 2019; Li
and Lu 2020; Lin et al. 2021; Lutz et al. 2018; Sengupta et al. 2020; Xu
et al. 2017; Zhang et al. 2021]. However, an impediment to achieving
production-quality alpha channels with these techniques has been
the lack of training datasets with accurate ground truth alpha chan-
nels. Many such datasets used in research use roughly estimated
alpha channels from actors in front of a green screen, with inaccu-
rate alpha variation in transition regions and foreground elements
which have not been well-separated from the background color. Our
work is not in the category of natural image matting algorithms, as
we film our actors in front of a green screen, but a major motivation
of our technique is to generate accurate ground truth alpha channel
data for training natural image matting algorithms.

2.4 Image Colorization
Image colorization has a similarly rich history to image matting
and is typically framed as converting a single-channel grayscale
image to RGB color, inferring three color channels from just one.
While early colorization techniques required manual digital paint-
ing, recent techniques surveyed by Anwar et al. [2020] and Žeger

et al. [2021] leverage machine learning to make better guesses as
to the colors in the original imagery. Techniques from before the
era of deep learning use statistical analysis or user-supplied color
examples to colorize an image [Chia et al. 2011; Levin et al. 2004;
Liu et al. 2008; Reinhard et al. 2001; Welsh et al. 2002].

Deep learning–based colorization techniques [Cheng et al. 2015;
Deshpande et al. 2017; He et al. 2018; Huang et al. 2022; Iizuka et al.
2016; Isola et al. 2017; Kumar et al. 2021; Saharia et al. 2022; Su
et al. 2020; Yoo et al. 2019; Zhang et al. 2016, 2017] have leveraged
vast image collections as training examples for supervised learning,
as any color RGB image is easily converted to monochrome to
form a training pair. Nonetheless, Su et al. [2020] note that “image
colorization is inherently an ill-posed problem with multi-modal
uncertainty.” If a monochrome image shows a person wearing a
grey shirt, it’s rarely clear what color the shirt should actually be.
Limmer and Lensch [2016] notably infer visible color RGB images
from infrared imagery, using a spectral channel disjoint from the
visible spectrum.

Deep colorization techniques have also been applied to video,
emphasizing the need to achieve temporal stability [Lei and Chen
2019; Vondrick et al. 2018; Zhang et al. 2019].

Informed by these works, we employ a colorization technique to
restore the green channel to imagery containing only the red and
blue channels of the scene. As this requires inferring one channel
from two, we have a simpler problem than monochrome-to-color
inference, and we find that an example-based approach works well.

3 STUDIO LIGHTING SETUP
We filmed our actors in an LED volume [Bluff et al. 2020; Hamon
et al. 2014] 18 meters wide and 9 meters deep, as shown in Figure 2.
The volume surrounds the actors 270 degrees around with ROE
Black Pearl 2v2 LED panels, each being 50cm on a side with 176×176
pixels for a 2.8mm pixel pitch. The panels consist of red, green, and
blue LEDs.

The actors stood on a platform in the middle of the stage fac-
ing toward one curved side wall, with the other curved side wall
behind them. We used the walls in front and to the side of the
actor for lighting and an area of the wall just behind the actors
for the background, cropped tightly around the camera frustum
to minimize spill light. In the canonical configuration, we drove
the lighting with a magenta color consisting of only the red and
blue LEDs and the background with a green color consisting of
only green LEDs. To validate the technique, various foreground
and background images were also placed on the lighting walls and
inside the background camera frustum.

We filmed our subjects with a RED Komodo digital cinema cam-
era2 commonly used for digital filmmaking. We filmed on a Canon
50mm EF lens set to an f/2.8 aperture to avoid the appearance of
moiré in the background. For the non-time-multiplexed recordings,
we set the frame rate to 24fps and the shutter angle to 180 degrees
to yield the typical frame rate and amount of motion blur com-
monly seen in movies. For the time-multiplexed recordings, we
shot at 48fps with a significantly narrower 105 degree shutter angle,
with successive frames recording alternating lighting conditions,
as described in Section 4.3.3.

2www.red.com/komodo

www.red.com/komodo
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Figure 2: A diagram of our principal LED volume filming
setup with magenta foreground lighting and a green screen
background within the camera frustum (top), and a photo of
the setup (bottom).

Our subjects were chosen to have differing skin tone, hair color,
and hair length and were costumed colorfully to challenge the col-
orization algorithm. Each subject was handed a glass bottle, one
red, one green, to test the algorithm’s ability to record semitrans-
parent alpha values. They were directed to perform actions which
showed the costumes from different angles and produced regions
with significant motion blur. A mirrored sphere and color chart
was placed in the scene to document the lighting. The reflection in
the mirrored sphere gives an indication of the foreground lighting.
Lighting the subjects from the front and the left side of the image,
but not the right, produced different matting challenges on their
left and right sides.

While any cinema camera delivering linear pixel values should
work with the basic magenta-green technique, we used the Komodo,
since it is a global shutter camera, capable of synchronizing to
the changing lighting conditions of the time-multiplexed matting
techniques described in Section 4.3.3.

Our matting technique can also be practiced without an LED
volume. For example, our initial experiments were performed using
inexpensive RGB LED light wands, lighting the actor with two
wands set to a magenta color and lighting a white background with
two wands set to a green color.

4 BASIC METHOD
Our method honors Alvy Ray Smith’s assertion that the “trans-
parency of an image is as fundamental as its color” [Smith 1995]

and uses one of the camera’s three color channels (usually green)
to measure the alpha channel. We then use example-based image
colorization to restore the green channel of the foreground element.

We can explain this process in terms of the matting equations
[Porter and Duff 1984]. We refer to a pixel’s background color using
the RGB triple [𝐵𝑅, 𝐵𝐺 , 𝐵𝐵], its foreground subject as [𝐹𝑅, 𝐹𝐺 , 𝐹𝐵],
and its composited appearance as [𝐶𝑅,𝐶𝐺 ,𝐶𝐵]. Assuming a single
alpha transparency 𝛼 for all color channels, the matting equations
are simply

𝐶𝑅 = 𝛼𝐹𝑅 + (1 − 𝛼)𝐵𝑅
𝐶𝐺 = 𝛼𝐹𝐺 + (1 − 𝛼)𝐵𝐺
𝐶𝐵 = 𝛼𝐹𝐵 + (1 − 𝛼)𝐵𝐵 .

(1)

These equations include seven total unknowns for a given pho-
tograph: 𝐵𝑅 , 𝐵𝐺 , 𝐵𝐵 , 𝐹𝑅 , 𝐹𝐺 , 𝐹𝐵 , 𝛼 , as the photograph’s pixel values
comprise 𝐶𝑅 , 𝐶𝐺 , 𝐶𝐵 . In the case that the background color 𝐵𝑅 ,
𝐵𝐺 , 𝐵𝐵 can be measured (e.g., by photographing a clean plate with-
out the foreground subject) there are four unknowns: 𝐹𝑅 , 𝐹𝐺 , 𝐹𝐵 ,
𝛼 . While many alpha matting algorithms focus on inferring 𝛼 , it
should be clear from these equations that to form a successful image
composite over a new background that indeed the foreground color
𝐹𝑅 , 𝐹𝐺 , 𝐹𝐵 must also be recovered, leaving the problem ill-posed
without additional constraints.

Smith and Blinn [1996] noted that if the subject reflects no blue
light, then 𝐹𝐵 = 0, and the blue channel of the subject in front of a
blue screen gives a direct measurement of 1 − 𝛼 , which allows 𝐹𝑅 ,
𝐹𝐺 , and 𝛼 to be determined easily. We leverage color-controllable
RGB LED lighting to a similar end: we turn off the green LEDs
lighting an arbitrary subject to force 𝐹𝐺 = 0 and illuminate them
from behind with a field of green light. In this way,

𝐶𝑅 = 𝛼𝐹𝑅 + (1 − 𝛼)𝐵𝑅
𝐶𝐺 = (1 − 𝛼)𝐵𝐺
𝐶𝐵 = 𝛼𝐹𝐵 + (1 − 𝛼)𝐵𝐵 .

(2)

Rearranging to solve for the three remaining unknowns yields

𝛼 =
𝐵𝐺 −𝐶𝐺

𝐵𝐺

𝐹𝑅 =
𝐶𝑅 − (1 − 𝛼)𝐵𝑅

𝛼

𝐹𝐵 =
𝐶𝐵 − (1 − 𝛼)𝐵𝐵

𝛼
.

(3)

Note that these equations are solvable only if 𝐵𝐺 > 0, as other-
wise the first equation is undefined. Furthermore, if 𝛼 is zero, the
foreground colors 𝐹𝑅 and 𝐹𝐵 are undefined. The intuition behind
these equations is that the green channel is guaranteed only to be
nonzero in the background, and so it is now essentially just a sil-
houette image of the subject, with pixel values of zero everywhere
in the foreground. This is the inverse of the desired alpha channel,
up to a scale factor. Given this more intuitive interpretation, it is
clear why the main additional constraint is that the background
must contain green; otherwise no silhouette image remains.

In this designed scenario, the foreground is guaranteed to have
𝐹𝐺 = 0. However, we could have also suggested that 𝐹𝑅 = 0 or 𝐹𝐵 =
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Figure 3: The spectral sensitivity curves of a variety of mea-
sured camera sensors [Jiang et al. 2013] overlaid with the
spectral output of the red, green, and blue LEDs of the LED
panels in an LED volume, showing crosstalk.

0, implying no red or blue pixels in the foreground, respectively
(see Section 5.2).

4.1 Color Calibration
Digital cinema cameras sense color by placing a color filter array—
often a Bayer pattern—over a set of photosites sensitive to the
entirety of the visible spectrum. The color filters, by design, usually
have a significant degree of overlap in spectral transmission. As
a result, a given wavelength of red light may register on both the
red and green color channels of an image, a phenomenon known
as crosstalk.

Since our method as outlined in (3) requires that the green pixel
values of the foreground content are all zero and, ideally, that the
red and blue channels show the subject against black, we need to
remove this color crosstalk. This can be done effectively with a 3×3
color transformation matrixM. To determineM, we first record the
appearance of each of the LED spectra to the cinema camera by
placing a color chart in the scene and illuminating it consecutively
by red, green, and blue light. We calculate the average RGB color of
the chart’s white square under each lighting condition and places
these RGB values as column vectors into a measurement matrix W.
The matrix records how much of each LED color affects each color
channel. Since W transforms the individual LED colors to camera
observations, M = W−1 transforms camera observations back to
the individual LED colors, removing the crosstalk. We thus apply
this color calibration matrix M to all imagery prior to applying the
solution of (3).

This calibration process allows us to pretend that we captured
our imagery using a camera with “sharp” spectral sensitivities with-
out color channel crosstalk. This solution is only guaranteed for
materials of spectrally neutral reflectance, such as the white square
of the color chart, since having a light spectrum reflect off of a
material reflectance spectrum transforms the spectral content of
the observed light, and a somewhat different crosstalk elimination
matrix could be required for different materials. However, since
the spectral output of the LEDs in a virtual production stage is

(a) (b)

(c) (d)

Figure 4: Correcting for bounce light. Actors are captured
in front of an unlit background exhibiting bounce light (a).
We also capture a clean plate showing the bounce light on
its own (b). We subtract the clean plate multiplied by the
holdout matte (c) from (a) to remove bounce light on just the
background, not the actors (d).

narrow (Figure 3), the crosstalk ratios tend to remain similar for
the majority of the spectral content of each LED. In practice, we are
able to eliminate the majority of crosstalk even for strongly hued
materials with a singleW applied to the whole image.

4.2 Bounce Light Subtraction
Afinal pre-processing step is necessary is to correct for the presence
of bounce light within the LED volume. Because LED panels are not
perfectly black and reflect some of the light falling upon them, the
background panels behind the actors will typically include some
bounced light from the foreground. This means that the foreground
elementwill not be seen against a perfect field of black, as is required
for the element to be self-matting with a premultiplied alpha but
against a field of dim reflected foreground light, a seen in Figure 4a.
We can measure this bounced light by turning off the background
LED panels while they are illuminated by foreground lighting as in
Figure 4b. After color correction, we can then subtract this bounced
light from just the background around the actors by first multiplying
it with the holdout matte as in Figure 4c, yielding the result in
Figure 4d.

4.3 Colorizing the Missing Green Channel
While the Magenta Green Screen process records an accurate alpha
matte, the resulting foreground elements have the serious deficiency
of missing their green channel. To address this, we design an image
colorization technique to restore the green channel based on the
observed red and blue channels.

4.3.1 Naive Colorization. Real-time colorization can be performed
in a simple but naive way by setting the green channel to be a linear
combination of the red and blue channels: 𝑔 = 𝜌𝑟 + (1 − 𝜌)𝑏. The
value 𝜌 can be 0.5 to average the channels or can be chosen to be a
value which optimizes the appearance of skin tones, closer to 𝜌 = 0.
Such naively-colorized images have a limited and innacurate range
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of colors, but they can get skin tones, neutral tones, blue skies,
and dusty plains all to look approximately correct, which explains
why the two-strip Technicolor process could be effectively used for
Westerns. However, greens, magentas, and many other colors will
be represented inaccurately. Figure 1c shows a naively-colorized
image from the magenta green matting process.

4.3.2 Colorization with Deep Learning. To recover the green chan-
nel more accurately, we can train a deep neural network to infer the
green channel from the red and blue channels based on full-color
training examples. For this we follow previous works which per-
form full colorization of grayscale images, e.g., [Zhang et al. 2016],
emboldened by the knowledge that our problem is a significantly
easier one, restoring one channel of information from two rather
than two from one.

In this work, we record scene-specific training data in the form
of an alternate “rehearsal” take of the scene shot under white RGB
lighting seen on a black background, as seen in Figure 5. Each frame
from this sequence yields a colorization training pair showing the
proper green channel for given red and blue channels.

During training, we take random 512 × 512 crops of the full
1920 × 1080 high definition frames and perform data augmentation
by randomly perturbing the image luminance and color balance.
Since our network is fully-convolutional, we can apply to it to the
full-resolution image at test-time despite training on patches. We
found that tone mapping the images with a gamma value of 2.2
improved the results compared to training on linear data, since
doing the latter leads to poor optimization in darker areas of the
images.

We use a standard image-to-image translation U-Net architecture
with skip connections [Ronneberger et al. 2015]. We first pass the
input through two 3 × 3 convolutional layers followed by five
downsampling blocks, starting with 32 channels and doubling the
number at each layer, five upsampling blocks with corresponding
numbers of channels, two additional 3 × 3 convolutions, and a
final 1 × 1 convolution and 𝑡𝑎𝑛ℎ non-linearity to constrain the
output pixel values to a reasonable range. We use a Leaky ReLU
non-linearity [Xu et al. 2020] and Batch Normalization [Ioffe and
Szegedy 2015] after each convolutional layer except for the first
two. Each downsampling and upsampling block contains two 3 × 3
convolutions and uses blur-pooling [Zhang 2019].

We train our network for 100,000 iterations using Adam [Kingma
and Ba 2014] as the optimizer and a learning rate of 0.0001 with
batch size 16. This takes approximately 2.5 hours on four NVIDIA
A10G GPUs. Color inference is much faster, taking less than one
second per frame.

4.3.3 Time-Multiplexing. A significant drawback ofMagenta Green
Screen is that the actors need to perform their scene under the un-
natural illumination condition of magenta light. We can disguise
the appearance of the magenta illumination by rapidly alternating
it with green illumination, with the camera synchronized to the
illumination changes so that it records only the magenta-green
conditions. This is similar to the effect demonstrated in [McDowall
et al. 2004], where black-and-white artwork was hidden within im-
agery projected by a high-speed video projector, with each artwork

Figure 5: An example frame of training data used for our
colorization model. Given frames of a subject captured with
white lighting in front of a black background, we train a
model to predict the green channel from the red and blue.

frame quickly followed by its black-and-white inverse. Related time-
multiplexing techniques have been shown for virtual production
matting applications by Wenger et al. [2005] and GhostFrame3.

Unfortunately, alternating between lighting patterns at 24Hz
is uncomfortably stroboscopic and could even be dangerous for
a person with a sensitivity to flashing light. According to Fisher
et al. [2022], for such photosensitive individuals, “images with
flashes brighter than 20 candelas/𝑚2 at 3-60 (particularly 15-20) Hz
occupying at least 10 to 25 degrees of the visual field are a risk."
We address this by increasing the repeating rate of the two lighting
conditions at 72HZ, so that the lighting changes from one color to
the next every 144th of a second. The lighting then appears nearly
constant, with a remaining effect being that rapidly moving objects
leave a trail of magenta/green outlines when seen against the screen,
as in Figure 6 (bottom).We can then synchronize our cinema camera
to record the first of every six lighting changes, requiring a shutter
angle of at most 60 degrees, yielding Magenta Green Screen images
at 24fps, as seen in Figure 6 (top). The magenta-green frames can
be colorized as before from a separate pass lit by full-spectrum
lighting.

The remaining drawback of time-multiplexing in this manner
is that the shorter shutter angle reduces the amount of motion
blur, which is considered desirable for cinema. Wenger et al. [2005]
faced a similar problem in their time-multiplexed relighting work,
with relit images formed as the linear combination of images taken
with very short exposure times. Like this work, we can address the
problem in our Time-Multiplexed Magenta Green Screen technique
by computing optical flow and using the flow not only to temporally
align adjacent frames, but also to add simulated 180 degree motion
blur to the images. We show an example of this in Figure 7 and in
the accompanying video.

3https://www.ghostframe.com/

https://www.ghostframe.com/
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1/72nd sec

1/24th sec

1/144th sec 1/144th sec

. . .

Figure 6: Time-multiplexed version ofMagenta Green Screen,
repeating the pattern and its inverse at 72Hz (top). While
the lighting appears neutral in color and does not visibly
pulsate, fast-moving objects show color fringing to the eye,
as approximated in this 360 degree shutter exposure (botton).

(a) Original. (b) With simulated motion blur.

Figure 7: We use optical flow to add simulated 180 degree
motion blue to our Time-Multiplexed Magenta Green Screen
composited footage.

4.4 Time-Multiplexed Magenta Green Screen
If we set the cinema camera to record at 48fps, it will record every
third lighting condition in the time-multiplexed magenta-green
sequence. As seen in Figure 6, this yields alternating frames lit by
magenta and green light, in front of a background of green then
magenta light, as seen in Figures 8a and 8b. Notably, the second

(a) Magenta-green frame. (b) Green-magenta frame.

(c) Foreground sans optical flow. (d) Foreground with optical flow.

Figure 8: In Time-Multiplexed Magenta Green Screen, a
magenta-green frame (a) is quickly followed by a green-
magenta frame (b) to neutralize its appearance. We recon-
struct the foreground naively (c) and using optical flow (d).

of each pair of frames contains the appearance of the actor under
green light. In the absence of motion, this green channel could
complete the red and blue channels of the previous frame and
eliminate the need for colorizing the foreground element. However,
in the presence of motion, there will be a frame misalignment, as
seen in Figure 8c.

We can attempt to align the frames by computing optical flow
from one magenta-green frame to the next, and displacing the
interposed green-magenta frame by half the estimated flow vectors,
similar to the use of tracking frames to align intermediate lighting
frames in [Wenger et al. 2005]. We use the Kronos node in the Nuke
studio compositing software for this purpose. After applyingmotion
compensation, we are able to recover the full RGB foreground
element (Figure 8d). However, when the subject moves quickly,
the optical flow algorithm fails to track the motion, resulting in
colorization errors.
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(a) Foreground. (b) Matte.

(c) Composite sans optical flow. (d) Composite with optical flow.

Figure 9: We use consecutive frames from Classic Time-
Multiplexed Matting (a, b) to reconstruct the foreground
without optical flow (c) and with optical flow.

4.5 Classic Time-Multiplexed Matting
Wenger et al. [2005] performed time-multiplexing matting by al-
ternating frames lit by white light against a dark background with
frames of the actor in silhouette against an illuminated background.
The technique required optical flow, and produced good results in
standard definition video. For comparison, we implemented this
classical time-multiplexedmatting approach by alternating between
the actor lit by RGB white lighting against black and then unlit
against an RGB white background, as in Figure 9. Applying optical
flow between the illuminated frames to align the matte can produce
a good composite and has the benefit of yielding a full-color matte
frame, able to record color-dependent transparency. However, as
can be seen in the accompanying video, the optical flow can fail in
the presence of fast subject motion, creating matte edges that are
misaligned with the foreground element. Our technique of shoot-
ing the matte in the same frame as the foreground element (which
becomes colorized) does not require optical flow for alignment.

4.6 Time-Multiplexed Triangulation Matting
Smith and Blinn [1996] proposed triangulation matting, where the
alpha channel of a foreground subject is derived by seeing the fore-
ground in front of two differently colored background images. The
technique was proposed for static scenes, but in this section we
apply the technique to dynamic scenes using our time-multiplexing
setup. We keep static white LED lighting static on the actor and
alternate the background LED panels in the camera frustum be-
tween green and blue, as in Figures 10a and 10b. We note that after
color matrixing to eliminate crosstalk, the red channel shows the
actor lit by red light against a dark background in both frames, as
seen in Figures 10c and 10d. We thus can perform a more robust
solution to the optical flow between the red channels of consec-
utive green and blue background frames, which are exposed just
1/48th of a second apart instead of 1/24th of a second. Displacing
the blue background frame to the position of the previous green
background frame supplies the imagery needed for triangulation
matting. However, even with this improved optical flow technique,
some temporal misalignment can remain, as in Figure 10f.

5 RESULTS AND DISCUSSION
5.1 Basic Magenta Green Screen Results
Figure 1 shows the main steps of the Magenta Green Screen process.
Figure 1a is a frame of a clip after the crosstalk elimination of Sec-
tion 4.1. Figure 1b shows the matte derived by dividing the green
channel by its appearance in the clean plate and inverting. Figure 1c
shows a naively colorized foreground element, where the green
channel is replaced with a simple linear combination of the red and
blue channels. The bounce light subtraction, as in Section 4.2, has
been applied to achieve a black background. Figure 1d shows the
foreground element colorized with machine learning, as described
in Section 4.3, based on a color reference performance under white
RGB light. Figure 1e shows the colorized foreground element com-
posited onto a background image, exhibiting good matte edges and
transparency for the bottles. Figure 1f shows a real ground truth
comparison image, where the actors were illuminated by white
RGB light and the background image was displayed on the LED
panels as an in-camera visual effect. Aside from slightly different
actor poses, the composited image and real ground truth image are
nearly indistinguishable, with believable matte edges and accurate
image colorization.

The sequence in Figure 1 is shown in motion in the accompany-
ing video, with the actors shaking the semitransparent bottles to
generate varying degrees of motion blur in the footage, showing
believable alpha transparency throughout.

5.2 Which Color to Use for the Matte?
We can alternatively choose to use the red or blue channel for
recording the matte instead of green: this would result in Yellow
Blue Screen matting or Cyan Red Screen matting. We chose to
use green for matting, since green screen is the most common
traditional matting process and records the matte with the highest
resolution channel, as Bayer pattern sensors have twice as many
green pixels as they do red or blue. We also imagined that inferring
a green channel prompted by the red and blue channels might the
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(a) Blue background. (b) Green background.

(c) Blue background (R channel). (d) Green background (R channel).

(e) Composite sans optical flow. (f) Composite with optical flow.

Figure 10: For Time-Multiplexed Triangulation Matting, we
capture a white-lit subject behind alternating differently-
colored frames (a, b). The red channels of the frames (c, d)
are similarly lit and can be used for computing optical flow
between the frames. We reconstruct the foreground without
optical flow (e) and with optical flow (f).

easiest colorization process, since the algorithm needs to infer a
color channel which is spectrally between two observed channels,
rather than outside the spectral area which has been recorded. To
test this theory, we implemented the Yellow Blue Screen process as
in Figure 12, training a different colorization process to predict the
actors’ blue channel from the red and green channels and the same
RGB-white-lit reference sequence. This technique also worked well,
and the yellow light was somewhat more pleasing to look at than
the magenta. One artifact occurred on the side of the blonde hair,
which appeared too yellow in some frames. However, we believe
this could be due to image sensor saturation in this area, since the
blonde hair reflected more yellow light than it did magenta, and we
left the exposures the same.

5.3 Recovering a Full-Color Alpha Channel
The alpha channel recovered fromMagenta Green Screen ismonochro-
matic, making the usual assumption that a foreground element’s
transparency in the green channel is the same for its red and blue
channels. If parts of the scene exhibit colorful transparency, such
as the red and green glass bottles in Figure 1, then a monochrome
matte would have the objects transmit incorrectly neutral light, as
in Figure 1b. In this case, we can colorize the matte image from a
reference recording of the actors performing while silhouetted in
front of a white background. Although this requires synthesizing
two channels from one, and even though there is much less visual
detail in the silhouetted imagery, our colorization framework is able
to colorize the holdout matte image as well as in Figure 13a. To aid
our model in matte colorization, we provide RGB channels of the
frame prior to the input monochrome matte as additional signal—
this training data can be obtained by multiplexing the silhouetted
lighting with white lighting over a black background.

A composited result from this process is shown in Figure 13b
and in the accompanying video. This yields a subtle improvement
in the appearance of the bottles compared to the basic Magenta
Green Screen technique of Figure 1.

5.4 Time-Multiplexed Results and Comparisons
The time-multiplexing technique results Section 4.3.3 are shown in
Figure 8 for Time-Multiplexed Magenta Green Screen, Figure 9
for Classic Time-Multiplexed Matting, and Figure 10 for Time-
Multiplexed Triangulation Matting. A sequence processed from
each technique is included in the accompanying video. In each case,
the technique works well except when there is significant subject
motion, and optical flow is relied upon to align the channels of
the foreground element and/or the matte from neighboring frames
recorded at 48fps. The ML colorization technique to reconstruct the
green channel of Time-Multiplexed Magenta Green Screen has the
advantage that no optical flow is required to align channels, and it
can be applied to Time-Multiplexed Magenta Green Screen footage
just as it can be to non-Time-Multiplexed Magenta Green Screen
footage.

5.5 Comparison to Traditional Green Screen
Figure 14 shows a matting comparison with a traditional green
screen approach. In this example, we use a subject wearing a green
dress with long blonde hair blown by a fan. The basic Magenta
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Figure 11: Four frames of the performance sequence from the accompanying video, all processed and composited onto two
different backgrounds using the basic Magenta Green Screen process. GT1 and GT2 show ground truth comparisons to the
composited shots Composite 1 and Composite 2.

Green Screen approach yields a high-quality alpha channel and
resulting composite, while an automated keying technique in Nuke
applied to the footage struggles to key out the dress, rendering
it significantly transparent; Magenta Green Screen also recovers
somewhat more detail in the wispy hair. While manual keying
techniques could certainly succeed in keying this green screen shot,

we are interested in an automated, reliable matting technique which
makes no restrictions on what the actor wears or how they move.

5.6 Discussion
The main findings of this work are that the Magenta Green Screen
approach appears to work well in generating high-quality alpha
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(a) (b)

(c) (d)

Figure 12: Yellow Blue Screen variant. Actors are lit by red
and green LED channels in front of a blue background (a). A
matte is derived from the Blue channel (b). We colorize the
foreground element (c) and produce a composite (d).

(a) (b)

(c) (d)

Figure 13: A full color matte (a) obtained by colorizing the
monochrome holdout matte (c) from the green channel from
Magenta Green Screen, showing colorful transparency of
the bottles. A composite (b) made using the full-color matte
yields better color rendition of the bottle than done using
the monochrome matte (d).

channels, and that our implementation of the colorization technique
appears to be accurate, effective, and temporally stable. Further-
more, our technique appears to outperform the matting that which
can be obtained with either traditional chromakey green screen or

(a) (b)

(c) (d)

(e) (f)

Figure 14: Comparison to traditional green screen. We record
an actor lit with Magenta Green Screen lighting (a) as well as
with white light against a traditional green screen (b). The
matte generated from the Magenta Green Screen process
(c) does not exhibit the artifacts of that generated from the
traditional green screen using automated chroma keying (d).
We show the correspondingMagenta Green Screen composite
(e) and chroma keyed composite (f).

time-multiplexed techniques which rely on optical flow to tempo-
rally align differently illuminated frames. And while we did not
compare to optical techniques to record a matte simultaneously
with the foreground element (e.g., infrared matting and the sodium
vapor process), we do not require a custom optical setup and do
not need to align images from different sensors or cameras.

6 FUTUREWORK
Our method suggests a number of avenues for future work. One de-
sirable improvement would be to eliminate the need for recording a
color reference clip of the actors in addition to the performance clip.
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To this end, we might be able to develop a generalized green chan-
nel colorization model trained on large internet image collections,
perhaps with some light augmentation of the model by reference
photos of the actors from their costume tests. Alternatively, we
could try to use the green channels found in the alternate frames
of the time-multiplexed Magenta Green Screen technique to train
the colorization model. This could be done by aligning the green
channels to the preceding red and blue channels with optical flow,
which perhaps would not need to be as accurate as when using the
flow to align the frames for direct compositing.

Finally, it would be of use to implement a real-time version of the
technique for on-set visualization and real-time in-camera visual
effects.While the colorizationmodel training time is currentlymuch
too slow for this, one could imagine using the naive colorization
technique while on set, and improving the colorization using the
neural network training in post-production.

7 CONCLUSION
In this work, we have presented Magenta Green Screen, a new
technique for alpha matte composting. We use lighting conditions
which are straightforward to produce on a modern LED virtual
production stage combined with a data-driven machine learning
algorithm, resulting in an approach that could make it easier to
add or change the background environment behind actors more
easily than current techniques allow. A main finding of this work
is that it can be very effective to train a network to restore one
of the color channels to an RGB image, making it possible to use
one of the channels to record an accurate alpha channel during
the performance. Another finding is that this image colorization
process can produce fewer visual artifacts than time-multiplexed
matting techniques which employ optical flow. We look forward
to applying these techniques to virtual production projects where
being able to change the background in post-production is an im-
portant requirement. Furthermore, the accurately measured alpha
channels which can be obtained with our technique should be able
to function as high-quality training data for natural image matting
algorithms.
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